
Advanced OS Refresher

A short summary and study guide

Matt Chung (https://blog.mattchung.me)

2020-10-20

Advanced OS Refresher 2020-10-20

Contents

Getting Started 3
About Refresher Course . 3
How to read this guide . 3

Memory Systems 4
Can I skip this section? . 4
Summary . 4
Naive Memory Model . 5
Cache Motivation . 5
Memory Hierarchy . 5
Locality and Cache Blocks . 5
Quiz: fill in the table . 5
Quiz: Howmany bits . 6
Set Associative Mapping . 6
Write Policy . 6
Address Translation . 6
Paging . 6
Page Table Implementation . 7
Accelerating address translation . 7
Page Table Entries . 7
Page Fault . 7
Virtually Indexed, Physically Tagged Caches . 7
Quiz . 7

File Systems 8
Can I skip this section? . 8
Main Take Aways . 8
Introduction . 9
File System Concept . 9
Access Rights . 9
Quiz: Permission Error . 9
Developer’s Interface . 9
Quiz: Sabotage . 9
MMAP . 9
Quiz: Shu�le . 9
Allocation Strategies . 10

Matt Chung (https://blog.mattchung.me) 2

Advanced OS Refresher 2020-10-20

File Allocation Table . 10
Quiz: Values in FAT . 10
File Allocation Table continued . 10
Inode Structure . 10
Quiz : Data Blocks . 10
Inode Structure . 10
Bu�er Cache . 11
Journaling . 11
Direct Memory Access . 11

Multithreaded programming 11
Can I skip this section? . 11
Summary . 11

Joinable vs Detached . 12
Thread layout design . 12

Getting Started

About Refresher Course

If you are thinking about taking advanced operating systems (AOS) course at Georgia Tech, you’ll be
recommended to take the Georgia Tech - Refresher - Advanced OS course o�ered on Udacity. This book
does not replace the course. Rather, this book serves as a supplement.

Maybe you just don’t have enough time to watch all the lectures (that’s okay, life gets in the way).
Maybe you have a pretty strong foundation and you just want to quickly skim through the contents.
Whatever the case, this book should help.

How to read this guide

Each of the three sections —memory systems, file systems, multi-threading — starts with “Can I skip
this section”. If you can successfully answer most of the questions listed, you’re probably safe with
skipping that particular section.

Matt Chung (https://blog.mattchung.me) 3

https://www.udacity.com/course/gt-refresher-advanced-os--ud098

Advanced OS Refresher 2020-10-20

Memory Systems

Can I skip this section?

If you can answer most of the questions below, you can probably skip the memory systems section:

• Do you understand the memory hiearchy (i.e. L1, L2, L3 cache)
• How does direct mapping work?
• What’s the di�erence between a write-through policy and a write-back policy?
• What is a fully associative set?
• What problem does a translation lookaside bu�er solve?
• What’s a page fault? How is a page fault resolved?

Summary

During this course refresher, my brain started slowly recalling the various system concepts of memory
systems. Here’s a quick recap of what I was able to remember from taking four system courses (i.e. com-
puter organization, operating systems, high performance computing architecture, and compilers):

• Naive Memory Model – Normally we think that memory access is fast. But that’s an oversimpli-
fication and it is much more nuanced. In fact, underneath the hood, there are cache systems
(i.e. L1, L2, L3 cache)

• Cache Motivation – We can speed upmemory access by a factor of 10 by introducing a cache.
That speed up can reduce the number of cycles from 100 down to ameager 4. Continuing with
this example, a 99% hit rate will yield 4.96 cycles on average, 90% hit rate of 13.6 cycles (huge
di�erence)

• Hierarchy – Given that we want the cache rate to be high and fast, how do wemake the right
trade o�s? By creating amemory hierarchy: registers, L1, L2, L3, thenmemory, which can also
serve as a cache for disks too. As wemove down the hierarchy, speed reduces as well as the cost.

• Locality and Cache Blocks – To populate our cache, we apply two heuristics: temporal (i.e. ad-
dress we just accessed we are more likely to access again) and space locality (i.e. addresses
adjacent to most recent address are more likely to be accessed). We store addresses in cache
blocks, which can vary in size depending on design

• Direct Mapping – Eachmemory address can live in only one cache line. This is easy to manage
but one downside is thrashing, a situation in which one cache line continues to get evicted over
and over despite other cache lines unused.

• Set Associative Mapping – One way to overcome the limitation of direct mapping (mentioned
previously) is to use set associative mappings: a cache line can live in multiple cache lines. The

Matt Chung (https://blog.mattchung.me) 4

Advanced OS Refresher 2020-10-20

trade o�? Need to implement some sort of cache evication algorithm (e.g. least recently used)
and will need to look up tag (most significant bits of the address) in multiple cache lines

• Fully Associative set – Any address can live at any cache line. Basically, the index bits (equal to
number of cache entries) is now 0 (when it was previously equal to number of cache entries).
Similiar to both the direct and set associative sets, we still use the o�set (n bits, where n is equal
to number of bytes within each block)

• Write Policy – write-through (write to both cache and memory, keeping two consistent) and
write-back (only writes to cache, beneficial when writing to same block many times before being
evicted) and write-allocate (read into cache, then choose one of the two write strategies) and
no-write-allocate (bypass cache and just write to memory). The relationship between these
policies?

Naive Memory Model

Normally, we think that memory access is fast. But it’s muchmore nuanced. In fact, underneath the
hood, there are cache systems (e.g. L1, L2)

Cache Motivation

adding a cache has a factor of 10 speed up. Say we have cache hit that’s 4 cycles, and amemory access
that’s 100. For 99% rate we get 4.96 on average; for 90%, 13.6. Huge di�erence)

Memory Hierarchy

We want cache hit rate to be high and fast, but how do we make right trade o�s? Create a memory
hierarchy: registers, L1, L2, thenmemory, which can serve as cache for disk too. Also, there might be
room for L3 cache if the processor is multi-core)

Locality and Cache Blocks

We apply a heuristic of temporal and space locality. Things that we just accessed, put in cache; things
adjacent or nearby, throw that in cache too. And, be consistent, using cache blocks)

Quiz: fill in the table

Tookmemuch longer to answer this quesiton, about 15 minutes to re-jog mymemory. But the o�set
determines which byte in the block. Since the block contains two bytes based o� of the photo, we

Matt Chung (https://blog.mattchung.me) 5

Advanced OS Refresher 2020-10-20

know that the o�set bit (n=1), 0 represents first byte 1 represented the second byte. Then the next m
bits link to the index, the remaining bits representing the tag)

Quiz: Howmany bits

Remember Matt, to calculate the number of cache lines, we take the total size of the cache (say 512
bytes) and divide it by the block size (say 64). This would be 512/64 = 8. So, now we have the index
value. And calculating the o�set is easy: take the block size (64 bytes) and derive the number of bits.
So for 64, we need a total of 6 bits. The rest go to the tag).

Set Associative Mapping

Wemight run into a situation of thrashing, one cache line being evicted over and over, based o� of the
access pattern)

Write Policy

write-through o�en paired with write-allocate and write-back o�en paired with no-write allocate.
Elaborate on this more Matt . . . don’t think you truly understand)

Address Translation

We employ a common CS trick: indirection. This technique promotes three benefits: large address
space, protection between processes, sharing between processes. Each process has its own page
table)

Paging

Because we can have more virtual memory than physical (thanks to indirection, above), we need a
mechanism to translate between the two. This mechanism is page translation table. And although the
VPN and PFN, virtual private number and physical frame number respectively, can di�er, the o�sets
into the page itself will always be the same)

Matt Chung (https://blog.mattchung.me) 6

Advanced OS Refresher 2020-10-20

Page Table Implementation

To map a virtual private number to physical private number, we need a page table. If we start with
a single array, it will be huge. Take the page size, covert this to bits, subtract page size (in bits) from
virtual address number (in bits). Take that number in bits, multiply it times the size of the PTE, page
table entry, and you get your page table. Huge. Instead, using multiple tables to reduce size, at the
cost of lookup time)

Accelerating address translation

To avoid hitting memory when looking up the page table, architects added a translation look aside
bu�er. But it’s not free. I Learned that with a TLB, there is a problem of using virtual page numbers:
how do we tell if that virtual page is valid for a process? We can tackle this by either 1) flushing the TLB
during a context switch or 2) adding some unique identifier to the TLB entry)

Page Table Entries

Take the number of bits of the physical address, subtract the page size (convert to bits), that that gives
us some remaining bits to play with: metadata. Inside of this location, we can store access control,
valid/present (again: reminding me of flickers of HPCA code), dirty, control caching)

Page Fault

If a process requests (or reads) an address that is not assigned a physical address, a page fault will occur
(not a big deal), and the page fault handler will run. This handler will start by checking the free-list
(reminds me of computing systems from a programmer’s perspective) and if address is available, then
use the address, then restart the process. But if no page is available, need to evict, then start up
again)

Virtually Indexed, Physically Tagged Caches

optimization the TLB and cache lookup, from sequential to parallel

Quiz

When calculating the max number of entries in the cache, for a virtually indexed, physically tagged
cache, we need not worry about the virtual or physical address size. Just need to think about the page

Matt Chung (https://blog.mattchung.me) 7

Advanced OS Refresher 2020-10-20

size and size of cache blocks

File Systems

Key words: unified bu�er cache, inode, journaling, direct memory access DMA), mmap, file allocation
table

Can I skip this section?

If you can answer most of the questions below, you can probably skip the file systems section:

• What does the mmap system call do?
• What’s the purpose of an inode?
• What problem does a unified bu�er cache solve?
• How does journaling work? What are the trade o�s with journaling?
• What is DMA?

Although I’ve covered file systems in previous courses, including graduate introduction of operating
systems, I really enjoy learning more about this concept in a little depth. The file system’s module is
packed with great material, the material introducing a high level introduction of file system and then
jumps into the deep end unveils what an operating system does behind the scenes.

Main Take Aways

The high level purpose of a file system provides three key abstractions: file, filename and directory
tree. A developer can interface with the file system in two ways: a position based (i.e. cursor) and a
memory based (i.e. block). Also, in C programming language, the function strol converts a string to
a long.

The mmap system calls maps a file on the file system to a contiguous block of memory (the second
method a developer can interface with a file systeme).

FAT (file allocation table) glues and chains disk blocks together. It is essentially a linked list (persisted
as a busy bit vector table) that is great for sequential reads (i.e. traversing the linked list) but awful for
random access (i.e. to get to the middle, need to traverse from head)

EXT linux file system is based on inodes and improves random access using 12 direct pointers (13th
pointer provides first level of indirection, 14th pointer second level of indirection, 15th pointer third
level of direction) Learned about the bu�er cache (i.e. write-through) and howwe a journal can help
stabilize the systemwhile maintaining decent performance Linked list and busy bit table

Matt Chung (https://blog.mattchung.me) 8

Advanced OS Refresher 2020-10-20

Introduction

Will introduce File Systems and what an OS does behind the scenes

File System Concept

Universal interface of file system contains three key abstractions: file, filename, and directory tree

Access Rights

Learned why we need the execute bit on directories: this permission a�ects whether you can pass
through the directory.

Quiz: Permission Error

Again, cannot cat another file within the subdirectory underneath the directory because parent
directory lacks the execution bit.

Developer’s Interface

Two ways to interface with file: cursor (i.e. position based strategy) or as a block of memory

Quiz: Sabotage

Learned that there’s a function called strtol that converts a string to long, and then I also opened up
the man pages for fcnt)

MMAP

Can treat a file like a memory bu�er and then persist memory map to file by calling munmap).

Quiz: Shu�le

Skipping over quizzes for writing C code . . . I do this enough at work)

Matt Chung (https://blog.mattchung.me) 9

Advanced OS Refresher 2020-10-20

Allocation Strategies

Block represents continuous amount of space on disk, analogous to a page in virtual memory. We can
keep track of said block using either free list or busy bit vector. In next sections, we’ll explore how FAT
accomplishes the following: simple & fast, flexible in size, e�icient use of space, fast sequential access
and fast random access

File Allocation Table

FAT is the glue that chains the blocks together. Directory files capture hierarchy and starting blocks for
the files

Quiz: Values in FAT

We can identify the starting blocks by eliminating any block that has another block pointing to it. Also
I’m curious if defragmenting improves the linked list somehow or the FAT table, moving sectors closing
together?

File Allocation Table continued

Great for sequential access like copy files to a USB drive. But has fallen out of popularity due to poor
random access given to hit the middle, we need to traverse the entire linked list)

Inode Structure

Instead of Fat table, we have an inode that contains metadata and 15 pointers., the first 12 are direct, 13
is first layer of indirection, 14 is the second layer (contains 2 levels) and 15 contains three levels.

Quiz : Data Blocks

When calculating the maximum size without second level of indirection, we take 4 times 12 then
multiply 1024 * 4 (i.e. 1024 contains number of entries))

Inode Structure

When compared to FAT, Inode o�ers much better performance for random access memory.

Matt Chung (https://blog.mattchung.me) 10

Advanced OS Refresher 2020-10-20

Bu�er Cache

Webu�er disk data in something called a unified buffer cache. I learned that if youwant to really
persist to disk, call fsync: otherwise, data sitting in unified bu�er cachemay get lost. Also, this is the
reason why OS warns you not to remove storage device without ejecting them first. I had no idea that’s
the reason why. Again, how neat)

Journaling

Very neat idea to handle the trade o� of using the unified bu�er cache. By adding a journal, we have
robustness but trade o� is that for every write there is another write. So two writes. But this journaling
mechanismo�ers a nice trade o�of onlywriting dirty pages to diskwhen the time ismore convenient.

Direct Memory Access

Hardware optimization: Direct Memory Access. This way, CPU does not need to copy data over the bus.
Disk controller can access memory directly)

Multithreaded programming

Can I skip this section?

If you can answer most of the questions below, you can probably skip the threading section:

• What does the pthread_join call do?
• What’s the di�erence between pthread_exit and exitwhen called by the main thread?
• What memory (e.g. heap, global, stack) is shared versus not shared between threads?

Summary

The virtual address space is divided into several sections, including the heap, globals, constants, and
code. Threads, within a process, share all these sections except that it has its own stack.

Writing multi-threaded code is di�icult and requires attention to detail. Nonetheless, multi-threaded
o�ers parallelizing work — even on a single core!

When compared with process context switches, thread context switches costs less (i.e. they are
cheaper).

Matt Chung (https://blog.mattchung.me) 11

Advanced OS Refresher 2020-10-20

Joinable vs Detached

A created thread falls into two categories: joinable or detached. Joined thread must explicitly be
cleaned up, whereas a detached thread will deallocate its stack automatically upon exit.

Thread layout design

When using threads, there are a couple di�erent design patterns: team, dispatched, pipeline. Selecting
the correct design depends on the application requirements.

Finally, when writing multi-threaded programming, the programmust keep in mind that there are two
di�erent problems that they need to consider: mutual exclusion and synchronization. Regardless, for
the program to be semantically correct, the programmust exhibit: concurrency, lack of deadlocks and
mutual exclusion of shared resources/memory.

Matt Chung (https://blog.mattchung.me) 12

	Getting Started
	About Refresher Course
	How to read this guide

	Memory Systems
	Can I skip this section?
	Summary
	Naive Memory Model
	Cache Motivation
	Memory Hierarchy
	Locality and Cache Blocks
	Quiz: fill in the table
	Quiz: How many bits
	Set Associative Mapping
	Write Policy
	Address Translation
	Paging
	Page Table Implementation
	Accelerating address translation
	Page Table Entries
	Page Fault
	Virtually Indexed, Physically Tagged Caches
	Quiz

	File Systems
	Can I skip this section?
	Main Take Aways
	Introduction
	File System Concept
	Access Rights
	Quiz: Permission Error
	Developer's Interface
	Quiz: Sabotage
	MMAP
	Quiz: Shuffle
	Allocation Strategies
	File Allocation Table
	Quiz: Values in FAT
	File Allocation Table continued
	Inode Structure
	Quiz : Data Blocks
	Inode Structure
	Buffer Cache
	Journaling
	Direct Memory Access

	Multithreaded programming
	Can I skip this section?
	Summary
	Joinable vs Detached
	Thread layout design

